
Neural Networks and Nervous Wrecks
Title: 20250508_NN_NW_Promise_Pitfalls/pdf

Date: 8th May 2025 Version: 1.0



Novalytics Limited

Neural Networks and Nervous Wrecks: What AI Really Is—Its

History, Promise, and Pitfalls
Novalytics Gibraltar

Abstract—Artificial Intelligence (AI) has rapidly evolved from theoretical
constructs to a powerful, practical force driving innovation across diverse
sectors. This paper provides a comprehensive overview of AI’s historical
development, technical foundations, applications, and limitations. It explores
the transition from symbolic reasoning and expert systems to modern machine
learning and deep learning paradigms. Key concepts such as neural networks,
supervised and reinforcement learning, model training, and AI infrastructure
are explained, with visual diagrams to aid understanding. The paper also
discusses the real-world impact of AI in IT, finance, and scientific research,
highlighting its strengths in pattern recognition, big data analysis, automation,
and forecasting. At the same time, critical limitations are examined, including
lack of contextual understanding, data bias, interpretability issues, and overre-
liance risks. The conclusion offers guidance on when and how to responsibly
apply AI, emphasising hybrid approaches and the need for human oversight in
high-stakes settings. Overall, the work aims to equip readers with a grounded,
nuanced understanding of AI as a transformative yet bounded technology.
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1. Introduction 1

Arti�cial intelligence (AI) refers tomachines or software that perform 2

tasks traditionally requiring human intelligence, such as learning, 3

problem solving, decision making, and language comprehension. To- 4

day, AI systems are integrated into various aspects of life, from virtual 5

assistants and recommendation algorithms to autonomous vehicles 6

and advanced analytics. With the advancement of AI capabilities, 7

discussions surrounding its potential and limitations have intensi�ed, 8

including questions aboutwhetherAIwill exceed human intelligence, 9

its transformative impact on industries, and associated risks [1]. To 10

fully understand these concerns, it is crucial to explore the history 11

of AI, the mechanisms behind its functionality, and its successes and 12

shortcomings. 13

This document presents a detailed overview of AI’s evolution and 14

its current applications. It begins by examining the history of AI, 15

highlighting signi�cant milestones, from early symbolic reasoning 16

programmes [2] to modern deep learning and generative models [3]. 17

The following section explains the technical foundations of AI, explor- 18

ing core concepts such as algorithms, neural networks, and various 19

learning paradigms (supervised, unsupervised, and reinforcement 20

learning). Subsequently, the discussion turns to the in�uence of AI on 21

contemporary society, especially in the �elds of information technol- 22

ogy, �nance, and data-driven research, showcasing its transformative 23

role [6]. The paper also identi�es key domains where AI excels, using 24

examples from IT operations, �nancial analysis, and data science 25

applications [4]. Furthermore, we address areas where AI struggle, 26

including issues related to generalisation, contextual understanding, 27

data dependence, bias, and the opaque nature of many AI models [5]. 28

The conclusion highlights situations where AI may not be the opti- 29

mal solution, emphasising the risks of overreliance and advocating 30

traditional methods or human judgment when appropriate [9]. 31

The objective is to provide a comprehensive, up-to-date understand- 32

ing of AI’s development, functioning, applications, and limitations, 33

thereby laying the groundwork for thoughtful, responsible integration 34

of AI across various sectors. 35

2. History of AI 36

The concept of intelligent machines has been explored for centuries 37

in both science and �ction, but arti�cial intelligence (AI) as a formal 38

research �eld emerged in the mid-20th century. Pioneering work 39

by Alan Turing in the 1930s and 1940s on computability and the 40

concept of a "Turing machine" laid the theoretical foundations for 41

understanding machine intelligence [1]. In 1950, Turing introduced 42

the famous Turing test, proposing that amachine could be considered 43

’intelligent’ if its conversational responses were indistinguishable 44

from those of a human. Several years later, in 1956, the term "Arti�cial 45

Intelligence" was coined at the Dartmouth Conference, organised by 46

John McCarthy and colleagues, a pivotal event that is often regarded 47

as the o�cial launch of AI as a research �eld [2]. Early optimism 48

was high; the researchers at Dartmouth, along with contemporaries 49

such as Newell and Simon, believed that human-level AI could be 50

achieved in a few decades. 51
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2.1. The Era of Symbolic AI (1950s–1960s)52

The 1950s and 1960s witnessed the rise of symbolic AI, which focused53

on explicit logical rules and symbolic representations of knowledge54

[3]. The prevailing idea was that human reasoning could be emulated55

by machines that manipulate symbols based on prede�ned rules.56

Notable early AI programmes include the logic Theorist (1956) and57

the General Problem Solver (GPS) (1957), both developed by Allen58

Newell and Herbert Simon. These programmes successfully proved59

mathematical theorems and solved puzzles using logical rules [6]. In60

1958, Frank Rosenblatt introduced the perceptron, an early single-61

layer neural network capable of learning to classify simple patterns62

[8]. However, at this stage, perceptrons were still considered a part of63

the symbolic AI paradigm, which functions as linear classi�ers with64

limited capabilities.65

Early AI research also explored games and language processing66

as testing grounds for arti�cial intelligence. In 1952, Arthur Samuel67

developed a checkers-playing programme that could improve its per-68

formance through self-play – an early demonstration of machine69

learning principles [4]. In 1966, Joseph Weizenbaum’s ELIZA pro-70

gramme showcased natural language interaction by engaging users in71

typed conversation using simple pattern matching scripts [9]. These72

projects captured the public imagination and demonstrated "intelli-73

gent" behaviour, but were largely limited by manual encoded rules74

or very simple learning mechanisms, highlighting the need for more75

robust learning and adaptability in AI systems [5].76

2.2. Challenges and the First "AI Winter" (1970s)77

By the late 1960s, the initial optimism surrounding AI began to give78

way to reality. Despite early successes, symbolic AI systems revealed79

signi�cant limitations. They struggled to handle the ambiguity and80

complexity of real-world scenarios beyond their programmed rules81

[6]. As one contemporary critique put it, these systems were brit-82

tle, e�ective only within narrow, prede�ned contexts. Prominent83

researchers, such as MarvinMinsky, warned in 1969 that Rosenblatt’s84

perceptron could not solve simple non-linear problems, such as the85

XOR problem, which dampened enthusiasm for neural approaches86

[1]. The grand promises of achieving human-level AI were, in hind-87

sight, premature.88

Consequently, the 1970s ushered in the �rst AI Winter – a period89

of reduced funding and waning interest in AI research [3]. Several90

factors contributed to this downturn [2]:91

Computational limitations: The early computers lacked the pro-92

cessing power and memory required to support the ambitious AI93

programmes envisioned [5]. Complex reasoning and large knowl-94

edge bases quickly exhausted the available resources.95

Knowledge acquisition bottleneck: Symbolic AI systems required96

extensive manual encoding of domain knowledge. Scaling this ap-97

proach to capture the knowledge of the common sense proved infea-98

sible [8].99

Inability to learn and generalise: Rule-based systems could not100

learn from new data or adapt to unforeseen situations. They per-101

formed poorly outside the exact scenarios for which they were pro-102

grammed [9].103

Expectation backlash: The hype about AI in the 1960s led to unreal-104

istic expectations. When progress stalled, investors and government105

agencies became increasingly sceptical [4].106

As funding dried up, many AI projects were cancelled throughout107

the 1970s [6]. This era served as a harsh lesson for the AI community108

about the dangers of overpromising and underdelivering. However,109

important research continued in isolated pockets. For example, in110

1975, computer scientist Ed Feigenbaum developed DENDRAL and111

later MYCIN, early expert systems for chemistry and medicine that112

would later serve as the foundation for a resurgence of AI through113

expert knowledge capture [7].114

2.3. Expert Systems and the Second AI Winter (1980s) 115

AI research saw a resurgence in the early 1980s with the advent 116

of expert systems. These programmes were designed to simulate 117

the decision-making of human domain experts by encoding large 118

sets of if-then rules. One notable example was XCON, an expert 119

system developed by DEC in the late 1970s for con�guring computer 120

systems. Expert systems achieved some commercial success in �elds 121

such as medical diagnosis (e.g. MYCIN), geology (prospecting) and 122

�nance, demonstrating real economic value by capturing specialised 123

knowledge [9]. This period is often referred to as the AI spring of the 124

1980s, with governments (such as Japan’s Fifth Generation Computer 125

project) and companies once again investing heavily in AI. 126

However, the limitations of expert systems soon became apparent. 127

These systems were costly to build and maintain, as the "knowledge 128

engineering" process of manually extracting rules from experts was 129

both time-consuming and expensive. Furthermore, expert systems 130

lacked the ability to learn. When the environment changed or excep- 131

tions occurred, their rigid structure caused failures. By the late 1980s, 132

enthusiasm for AI began to wane once again. The market became 133

saturated with weak expert systems, many of which failed to meet 134

the high expectations set for them, leading to the second AI win- 135

ter around 1987-1993 [3]. Many AI companies folded and research 136

funding was once again reduced. 137

Despite these setbacks, the 1980s laid important groundwork for fu- 138

ture AI developments. During this time, researchers began to explore 139

connectionist approaches, notably neural networks, more deeply. 140

In 1986, Rumelhart, Hinton, and Williams rediscovered and popu- 141

larised the backpropagation algorithm for training multilayer neu- 142

ral networks, which overcame the earlier limitations of single-layer 143

perceptrons [6]. Meanwhile, Judea Pearl developed probabilistic 144

graphical models, also known as Bayesian networks, to reason under 145

uncertainty [8]. Although these ideas did not fully yield results until 146

later, they represented a signi�cant shift from pure rule-based AI to 147

methods capable of handling uncertainty and learning from data. 148

2.4. The Machine Learning Era (1990s–2000s) 149

By the 1990s, AI’s focus shifted to machine learning, algorithms 150

that enable computers to identify patterns and make predictions 151

from data. Rather than manually encoding behaviour through rules, 152

researchers began developing statistical techniques that could be 153

trained on large datasets. This era saw the maturation of methods 154

such as decision trees, support vector machines (SVMs), ensemble 155

methods, and neural networks with a few hidden layers, sometimes 156

referred to as "shallow" neural nets. 157

A signi�cant milestone occurred in 1997 when IBM’s Deep Blue 158

chess computer defeated world champion Garry Kasparov, the �rst 159

time a reigning world chess champion lost to a computer in a tour- 160

nament setting [1]. Deep Blue’s victory was achieved through brute- 161

force search and expert-tuned heuristics, rather than through learn- 162

ing. However, it demonstrated the immense computational power 163

available for solving complex problems. In the same year, Sepp 164

Hochreiter and Jürgen Schmidhuber introduced the Long-Short-Term 165

Memory (LSTM) neural network, which enabled machines to learn 166

from sequential data and would later prove crucial for speech and 167

language applications [3]. 168

The late 1990s and early 2000s saw signi�cant advancements, par- 169

ticularly in speech recognition and computer vision, throughmachine 170

learning techniques. In 1989, Yann LeCun and colleagues demon- 171

strated a convolutional neural network (CNN) capable of recognising 172

handwritten characters – a precursor to modern image recognition 173

[6]. By the 2000s, statistical approaches had fully taken over many 174

AI �elds, often rebranded as machine learning or data mining. A 175

landmark achievement occurred in 2009, when Fei-Fei Li’s team 176

introduced ImageNet, a massive labelled image dataset that would 177

become a catalyst for major progress in computer vision [8]. 178

Another notable event was IBM’s Watson system defeating hu- 179
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man champions on the quiz show Jeopardy! in 2011 [9]. Watson180

combined machine learning, natural language processing, and infor-181

mation retrieval techniques to answer general knowledge questions,182

demonstrating the potential of AI to handle unstructured language183

and vast amounts of information under time pressure.184

2.5. The Deep Learning Revolution (2010s)185

The 2010s witnessed a dramatic resurgence of neural networks, now186

withmany layers, marking the rise of deep learning. Three key factors187

converged to enable this revolution: (1) the availability of massive188

datasets, such as ImageNet’s millions of images, (2) the emergence189

of more powerful hardware, particularly graphics processing units190

(GPUs) that accelerated neural network computations, and (3) the191

development of improved algorithms and architectures, thanks to192

researchers who persisted with neural approaches during previous193

lean years.194

A de�ning breakthrough occurred in 2012, when a deep convolu-195

tional neural network (CNN) known as AlexNet, developed by Alex196

Krizhevsky, Ilya Sutskever, and Geo�rey Hinton, won the ImageNet197

image recognition competition by a signi�cant margin, achieving198

far better accuracy than prior approaches [6]. AlexNet, with 8 learnt199

layers and trained on GPUs, demonstrated the power of deep learning200

as a general approach. Its success prompted an explosion of deep201

learning research and applications [1]. In the following years, deep202

neural networks dominated benchmarks in computer vision, speech203

recognition, and eventually natural language processing (NLP). For204

example, in 2014, Ian Goodfellow’s invention of generative adversar-205

ial networks (GAN) introduced a novel way for neural networks to206

generate surprisingly realistic images [3].207

Deep learning also enabled signi�cant advances in games. In 2016,208

DeepMind’s AlphaGo system, which combined deep neural networks209

with reinforcement learning, defeated the top Go player Lee Sedol, a210

feat previously considered at least a decade away [9]. Unlike chess,211

Go has a vastly larger search space, and AlphaGo’s victory demon-212

strated the power of deep learning to handle complexity by learning213

value and policy networks from data, including both human expert214

games and self-play. AlphaGo’s successors, such as AlphaZero and215

AlphaStar, have since mastered additional games and even solved216

complex problems like protein folding. In 2020, DeepMindAlphaFold217

achieved a breakthrough in the prediction of 3D protein structures,218

outperforming decades of prior research in that �eld [8].219

A further paradigm shift occurred in 2017 with the introduction of220

the transformer architecture by Vaswani et al. in their paper Atten-221

tion is All You Need [5]. Transformers enabled much larger andmore222

e�ective neural networks for sequence data by replacing recurrent223

architectures with attention mechanisms that capture long-range de-224

pendencies. This development led to the era of large-scale language225

models. In 2018, OpenAI’s GPT (Generative Pre-trained Transformer)226

demonstrated that a transformer-based network trained on massive227

text corpora could generate coherent text [9]. By 2020, OpenAI in-228

troduced GPT-3, a language model with a staggering 175 billion pa-229

rameters, capable of performing a wide range of language tasks with230

minimal prompting [7]. The public release of ChatGPT at the end231

of 2022, a conversational interface built on GPT-3.5, captured the232

attention of the global public, as millions experienced an AI system233

capable of producing remarkably human-like dialogue on virtually234

any topic [1]. In 2023, OpenAI’s GPT-4 and other competitors, such235

as Google’s Bard, pushed the boundaries further with multimodal236

abilities (processing both images and text) and improved reasoning,237

though concerns about factual accuracy and misuse remain [3].238

By the early 2020s, AI has indisputably moved from the labora-239

tory to widespread deployment. AI techniques are integral to many240

everyday technologies (search engines, smartphones, vehicles), and241

AI research continues at an accelerated pace. We now turn to an242

explanation of how these AI systems actually work from a technical243

standpoint.244

Year Milestone Signi�cance

1950 Turing Test proposed De�ned a benchmark for eval-
uating machine intelligence.

1956 Dartmouth Conference Term “Arti�cial Intelligence”
coined; launch of AI as a for-
mal discipline.

1958 Rosenblatt’s Perceptron Introduced the �rst neural
network model capable of
learning from data.

1966 ELIZA chatbot Early demonstration of natu-
ral language processing simu-
lating conversation.

1970s First AI Winter Research and funding de-
clined due to limitations of
symbolic AI approaches.

1980s Expert systems boom Deployment of rule-based sys-
tems in commercial and in-
dustrial settings.

1987 Second AI Winter Decline in interest following
failures of expert systems to
scale or adapt.

1997 Deep Blue defeats Kasparov First time a reigning world
chess champion lost to a com-
puter.

2006 ImageNet project begins Enabled large-scale super-
vised learning in computer
vision.

2012 AlexNet wins ImageNet Demonstrated the power of
deep learning for image recog-
nition tasks.

2016 AlphaGo beats Lee Sedol Breakthrough in deep rein-
forcement learning for com-
plex strategic games.

2022 ChatGPT released Transformer-based language
models gain mainstream
adoption.

Table 1. Abbreviated timeline of AI history highlighting select milestones.
Citations for these milestones are available in the main text.

3. Technical Workings of AI Systems 245

Modern AI systems are built upon a combination of algorithms and 246

computational architectures that allow data learning and the perfor- 247

mance of complex tasks. In this section, we explain the core concepts 248

of how AI functions, beginning with algorithms and progressing to 249

the specialised models and learning paradigms that de�ne today’s AI. 250

3.1. Algorithms and Models in AI 251

At its core, an algorithm is a step-by-step procedure to solve a problem 252

or perform a computation. In AI, algorithms often take the form of 253

training procedures that adjust the parameters of a model to improve 254

performance on a given task. A model in AI is the mathematical 255

structure or programme that makes predictions or decisions. For 256

example, a linear regressionmodel is de�ned by a linear equationwith 257

speci�c coe�cients. A training algorithm, such as the least-squares 258

�t, �nds values for these coe�cients that best �t the training data. In 259

more complex AI systems, the model might be a multilayer neural 260

network with millions of parameters, and the training algorithm 261

might be stochastic gradient descent. 262

Two broad families of AI models can be distinguished: 263

Symbolic models: These explicitly encode knowledge and logic. 264

For example, the model of an expert system is a rule knowledge base, 265

and an algorithm (such as a logical inference engine) operates on this 266

knowledge base to derive conclusions. 267

Subsymbolic models: These include neural networks and other 268

distributed representations, where knowledge is stored in numeric pa- 269

rameters (weights) rather than discrete symbolic rules. These models 270

generally require learning from the data to adjust these parameters 271

and improve their performance. 272

Since the late 20th century, sub-symbolic models, particularly neu- 273

ral networks, have dominated AI research due to their ability to auto- 274

matically learn complex patterns from data. The typical work�ow in 275

training such models is as follows: 276

1. De�ne the model architecture: For example, choose a neural 277
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network with a speci�ed number of layers and connectivity.278

2. Choose a loss function: This is a measure of error that the279

training algorithm attempts to minimise. For example, the loss280

function might quantify the di�erence between the model’s pre-281

dictions and the true labels of the training data.282

3. Train the model on the data: Use an optimisation algorithm283

to adjust the parameters and minimise the loss on the training284

data. Common methods for this include gradient descent and285

its variants.286

4. Evaluate and iterate: Test the model on separate data to en-287

sure that it generalises well. Adjust the model or algorithm as288

necessary, which may include hyperparameter tuning and other289

re�nements.290

If the model learns e�ectively, it can then be deployed to make291

predictions or decisions on new unseen inputs.292

A fundamental component of modern AI models, especially in293

deep learning, is the arti�cial neural network (ANN). Loosely in-294

spired by the structure of brain neurones, ANNs consist of intercon-295

nected layers of simple units that transform input into output. Each296

connection has a weight, which is learnt during training. Figure 1297

illustrates a simple example of a feedforward neural network with298

an input layer, a hidden layer, and an output layer. During training,299

data are passed through the network, producing predictions. The300

errors are then propagated backward through the network (a process301

called backpropagation) to adjust the weights [6]. This process allows302

the network to gradually learn representations of the data that are303

useful for speci�c tasks, such as classifying images or understanding304

language.305

1Bias

1Bias

Input 1

Input 2

Input 3

Output 1

Output 2

Input Layer Hidden Layer (ReLU) Output Layer (Softmax)

Figure 1. A compact feedforward arti�cial neural network for two-column
layout. Includes three input features, a hidden ReLU-activated layer with
four neurons and bias, and a Softmax output layer. All connections are fully

connected and directional.

Neural networks are a �exible class of models: by increasing the306

number of neurones and layers (depth), they can approximate ex-307

tremely complex functions. Deep networks automatically learn hi-308

erarchical feature representations. For example, in an image recog-309

nition network, early layers might learn to detect edges, midlayers310

compose edges into shapes, and later layers recognise objects. This311

automatic feature learning is a major advantage over previous AI312

approaches that required manual feature engineering. 313

It is important to note that not all AI is based on neural networks. 314

Other models, such as decision trees, random forests, gradient boost- 315

ing machines, support vector machines, and Bayesian models, are 316

also widely used, particularly for tasks involving tabular data. How- 317

ever, in domains such as computer vision, speech recognition, and 318

natural language processing (NLP), neural networks (especially deep 319

learning models) currently achieve state-of-the-art results. As a re- 320

sult, these models form the focus of most technical discussions in 321

AI. 322

3.2. Learning Paradigms: Supervised, Unsupervised, and Rein- 323

forcement Learning 324

The way an AI system learns can vary. The �eld of machine learning 325

generally recognises three main paradigms of learning: 326

• Supervised Learning: The model is trained on input-output 327

pairs, that is, labelled data where the desired correct output is 328

provided for each input. The learning algorithm adjusts the 329

model to best map inputs to outputs. This is analogous to learn- 330

ing with an answer key by a student. Example: Predicting house 331

prices from features (size, location) using a dataset of past home 332

sales (with price labels). The algorithm might be linear regres- 333

sion or a neural network, and it will learn to predict the price 334

given the features by minimising the prediction error on the 335

training set [3], [6]. Common supervised tasks include classi- 336

�cation (the output is a category) and regression (output is a 337

numeric value). 338

• Unsupervised Learning: The model is given data without 339

explicit labels or targets, and it must �nd a structure in the 340

data on its own. This is like discovering patterns or groupings 341

inherent in the inputs. Example: Clustering of customers into 342

segments based on purchasing behaviour, without being told any 343

pre-de�ned categories. Algorithms such as clustering k-means 344

will group data points that are similar in the feature space [9]. 345

Other unsupervised tasks include dimensionality reduction (e.g., 346

PCA), density estimation, and anomaly detection. Unsupervised 347

learning is often used for exploratory data analysis or as a pre- 348

training step. 349

• Reinforcement Learning (RL): The model (often called an 350

agent) learns by interacting with an environment. Instead of 351

direct labels, it receives feedback in the form of rewards for its 352

actions [1], [5]. The goal is to learn a policy (a strategy that maps 353

states to actions) that maximises the cumulative reward. This is 354

akin to learning through trial-and-error experience guided by 355

feedback. Example: A gamer agent who receives a +1 reward for 356

winning or -1 for losing. Duringmany simulated games, you will 357

learn which actions lead to wins. Key concepts in RL include 358

states, actions, rewards, and the notion of exploring the environ- 359

ment versus exploiting current knowledge [9]. Algorithms such 360

as Q-learning or policy gradient methods are used to update 361

the agent policy. Figure 2 illustrates the reinforcement learning 362

loop: the agent observes the current state of the environment, 363

takes an action, and in return gets a reward and the next state 364

[6]. 365

Each learning paradigm is suited to di�erent types of problems. Su- 366

pervised learning currently dominates industry applications because 367

many tasks, such as object recognition, speech-to-text conversion, and 368

predicting customer churn, can be framed with labelled datasets. Su- 369

pervised learning tends to produce direct and high-accuracy solutions 370

when there are ample labelled data available [3], [6]. Unsupervised 371

learning is valuable when labelling is impractical as it can uncover 372

hidden patterns or compress data. Reinforcement learning (RL) ex- 373

cels in scenarios that involve sequential decision making or where 374

feedback is delayed, such as robotics, game play, or resource man- 375

agement. RL has achieved high-pro�le successes (e.g., AI in games, 376
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Agent
(Policy �) Environment

Action at

Reward rt
New State st+1

Observes state st

Figure 2. Reinforcement Learning loop: an agent observes a state from the
environment, takes an action, and receives a reward and a new state. The
agent’s objective is to learn a policy for choosing actions that maximize the

long-term reward[7].

energy optimisation of data centres), although it often requires many377

trial interactions, which can be a hurdle in real-world deployment378

[1], [5].379

There are also hybrid approaches, such as semi-supervised learn-380

ing (using a combination of labelled and unlabelled data) and self-381

supervised learning (where the data provide its own supervision, for382

example, by predicting part of the input from other parts). Recent383

large language models use self-supervised objectives, such as predict-384

ing the next word in a sentence, to learn from enormous unlabelled385

text corpora, e�ectively learning a wealth of knowledge without hu-386

man annotation [9].387

3.3. Key Concepts: Training, Generalisation and Model Evalua-388

tion389

Regardless of the learning paradigm, several foundational concepts390

apply:391

• Training vs. Inference: Training refers to the process of learn-392

ing the parameters of the model from the data. This process393

is typically compute-intensive, especially for deep networks394

trained on large datasets, and is generally done o�ine. Inference395

is the application of a trained model to new data to make pre-396

dictions or decisions. After the training phase (which can take397

hours, days, or more on specialised hardware), inference must398

be relatively fast to facilitate real-time applications.399

• Generalization: The goal is to develop models that not only400

memorise the training data but also performwell on unseen data.401

The ability to generalise is crucial inAI. Techniques such as cross-402

validation, regularisation (e.g., weight decay, dropout in neural403

networks), and early stopping are used to prevent over�tting to404

training data. The performance of a model is typically assessed405

in a separate set of tests to estimate how well it generalises.406

• Evaluation metrics: Depending on the task, di�erent metrics407

are used to assess performance. For classi�cation tasks, common408

metrics include accuracy, precision, recall, and the F1 score. For409

regression tasks, metrics such as mean squared error (MSE) are410

commonly used. In AI systems deployed in practice, additional411

metrics, such as fairness, robustness, and interpretability, can412

also be considered.413

• Optimization: Training often boils down to an optimisation414

problem: minimising the loss function. Gradient-based optimi-415

sation methods, such as stochastic gradient descent (SGD) and416

Adam, are the workhorses for training neural networks. These417

algorithms iteratively adjust the model’s weights in the direction418

that most reduces the error on a batch of training examples.419

• Hyperparameters: These are parameters external to the model420

weights that a�ect the learning process (e.g., learning rate, net-421

work depth, and regularisation strength). Hyperparameters are422

typically tuned through experimentation. Automated hyper-423

parameter tuning, using techniques like grid search, random424

search, or Bayesian optimisation, is common to �nd an optimal425

con�guration.426

To illustrate, consider a concrete example: training a neural net-427

work to classify images of handwritten digits (the MNIST dataset). 428

We have 60,000 labelled examples, each being a 28 × 28 image with a 429

known digit from 0 to 9. We choose a network architecture (e.g., 2 430

hidden layers with ReLU activation) and initialise weights randomly. 431

In training, at each iteration, we: 432

1. Take a batch of images and perform a forward pass to get the 433

predicted probabilities for each digit. 434

2. Compute the loss (e.g., cross-entropy between predicted proba- 435

bilities and the true labels). 436

3. Calculate the loss gradients with respect to each weight using 437

backpropagation. 438

4. Update the weights slightly in the opposite direction of the gra- 439

dient (with a step size determined by the learning rate). 440

This process repeats over many epochs (passes through the data). 441

Over time, the network predictions become more accurate in the 442

training images. Wemonitor the accuracy of a validation set to ensure 443

that themodel is not over-�tting. Once training yields good validation 444

performance, we evaluate the model on a test set and, if satisfactory, 445

proceed to deploy it. This pipeline is typical for supervised learning 446

problems. 447

In reinforcement learning, the loop di�ers (as shown in Figure 2), 448

but the concept of iteratively improving a policy based on feedback 449

(reward signals) is analogous to using gradients to improve a super- 450

vised model based on error signals. Both approaches are iterative 451

improvement processes, guided by an objective. 452

3.4. AI System Components and Infrastructure 453

Beyond the learning algorithms and models themselves, practical AI 454

systems involve substantial surrounding infrastructure. 455

• Data pipelines: ’Data is the lifeblood of AI.’ Data preparation, 456

including collection, cleaning, labelling, and augmentation, of- 457

ten consumes most e�ort. Large-scale AI applications require 458

robust data pipelines and may also necessitate real-time data 459

streams. 460

• Computing hardware: Training modern deep learning mod- 461

els often requires specialised hardware such as GPUs or TPUs 462

(Tensor Processing Units). The rise of AI has gone hand in hand 463

with advances in hardware, with the availability of GPUs around 464

2010 serving as a key enabler for the deep learning revolution 465

[3], [6]. Today, specialised AI accelerators and cloud computing 466

resources are widely used to support large-scale AI tasks. 467

• Frameworks and libraries: Tools such as TensorFlow, Py- 468

Torch, and scikit-learn provide high-level building blocks for 469

implementing models and algorithms e�ciently. These frame- 470

works abstract much of the complexity of gradient computation 471

and parallelisation, signi�cantly accelerating AI development. 472

• Deployment and integration: AI models must be integrated 473

into applications. This could involve converting a trained model 474

to run on edge devices, which have constraints on memory and 475

power, setting up API endpoints for a model serving service, or 476

building user interfaces for AI functionality (such as a chatbot 477

interface to a language model). In addition, monitoring model 478

performance in production and setting up feedback loops for 479

continuous learning are critical considerations. 480

• Security and robustness: Engineering AI systems includes 481

securing them in terms of cybersecurity and ensuring their ro- 482

bustness to adversarial input. Adversarial attacks, where subtly 483

modi�ed inputs deceive a model, are an active area of research 484

and a signi�cant concern for practical AI deployment. 485

From a technical perspective, what distinguishes AI systems is the 486

emphasis on learning and adaptation. Unlike traditional software, 487

where every rule is hand coded by programmers, AI systems (espe- 488

cially those based on machine learning) derive their behaviour from 489

data. This characteristic makes them powerful, but it also introduces 490
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new challenges, as their behaviour is implicitly de�ned by the data491

and training process, rather than explicit rules. We will explore the492

implications of this when discussing limitations such as bias and493

interpretability.494

To conclude this section: Modern AI operates through complex495

models (often neural networks) trained on large datasets using itera-496

tive optimisation algorithms. These models can achieve impressive497

feats, such as vision recognition, language understanding, and strate-498

gic game play, by extracting patterns from data that humans would499

�nd di�cult to express as explicit rules. With this technical founda-500

tion in place, we now turn our attention to how these AI capabilities501

are being applied across key sectors and the impact they are having.502

4. Implications for IT, Finance, and Data Research503

Arti�cial intelligence is not just a theoretical research domain; it504

has become a critical practical technology in various industries. In505

this section, we focus on three key areas: the IT sector, �nance, and506

data-driven research to explore what AI means for modern society507

and how it is being leveraged in these domains.508

4.1. Transforming the IT Sector509

In the information technology (IT) industry, AI has driven automation510

and intelligent tools, reshaping how software and IT services are511

delivered. There are several clear ways AI is making an impact in IT:512

• Software Development and Quality Assurance: AI tech-513

niques are increasingly used to assist in writing code (e.g., code514

completion, automated code reviews) and in testing software.515

For example, machine learning models can learn from large516

code repositories to suggest code snippets or identify common517

bugs. In quality assurance (QA), AI-based tools automate regres-518

sion testing by intelligently generating test cases and detecting519

anomalies in software behaviour. This can signi�cantly accel-520

erate release cycles. AI’s pattern recognition ability allows it521

to detect recurring error patterns in log �les or code changes,522

enabling faster debugging [3], [6]. In general, by taking over523

repetitive and labour-intensive aspects of development and test-524

ing, AI allows human developers to focus more on design and525

creative aspects.526

• IT Operations and Infrastructure (AIOps): Managing com-527

plex IT systems (data centres, cloud infrastructure, corporate528

networks) generates vast amounts of log and performance data.529

AI helps by sifting through this data to detect incidents, predict530

outages, and optimise resources – a �eld commonly referred531

to as ’AIOps’ (AI for IT Operations) [9]. For example, AI algo-532

rithms can predict when a server is likely to fail based on sensor533

data and logs, enabling pre-emptive maintenance. They can534

also automate responses to common incidents (self-healing sys-535

tems). Gartner coined the term AIOps to describe multi-layered536

platforms that use big data, analytics, and machine learning to537

automate IT operations processes such as monitoring, service538

desk management, and automation [1]. The result is improved539

uptime and e�ciency in IT environments that have become too540

complex for manual human monitoring alone.541

• ServiceManagement and Support: AI is also applied to IT ser-542

vice management, such as handling user requests, helpdesk tick-543

ets, and other support functions. AI-powered chatbots and vir-544

tual assistants are deployed to manage routine helpdesk queries545

(e.g., password resets or frequently asked questions), reducing546

the workload on human support sta�. Natural language process-547

ing (NLP) enables these systems to understand user questions548

and either answer themor route them to the appropriate solution.549

AI can also help prioritise and classify IT tickets by analysing550

their content (e.g., urgent issues can be auto-�agged). By apply-551

ing AI to service management, organisations improve response552

times, improve user satisfaction, and reduce support costs [5],553

[6].554

• Security andThreatDetection: Cybersecurity is a critical area 555

of IT, and AI has become an indispensable tool to detect and re- 556

spond to threats. Machine learning models can identify patterns 557

of normal versus malicious behaviour in network tra�c, user 558

logins, or application usage. This enables the real-time detection 559

of intrusions, fraud, or abuse. For example, AI-based security 560

systems might analyse millions of log-ins to detect anomalies 561

indicative of credential-cramming attacks or monitor network 562

packets to �ag patterns matching known malware signatures. 563

The dynamic nature of cyber threats makes the ability of AI to 564

continuously learn and adapt especially valuable. Many com- 565

panies now rely on AI-driven Security Information and Event 566

Management (SIEM) systems for automated threat detection 567

[3]. 568

These AI-driven changes in IT have broad implications. The e�- 569

ciency and reliability of IT services are improved: systems experience 570

fewer outages due to predictive maintenance, and issues are resolved 571

faster with intelligent support. At the same time, the role of IT pro- 572

fessionals is evolving – they are increasingly supervising AI tools or 573

focussing on higher-level strategy, rather than performing all tasks 574

manually. In general, AI serves as a force multiplier for IT operations. 575

Industry surveys show that the adoption of AI is becoming essen- 576

tial for the delivery of competitive IT services. For example, one 577

study predicts that global spending on AI systems will exceed $500 578

billion by 2027 in areas including IT operations and business process 579

management [8], [9]. Many IT �rms now promote AI integration 580

as part of their o�erings (often referred to as ’AI driven’ services or 581

’self-driving IT’). AI in the IT sector is about automation, intelligence, 582

and the ability to manage complexity at scale. Companies that suc- 583

cessfully leverage AI in their IT processes often achieve more agile 584

and resilient operations compared to those relying purely on manual 585

human e�ort. 586

4.2. AI in Finance: Automation, Analytics, and Decision Support 587

The �nancial services industry was an early adopter of AI technolo- 588

gies, and today AI’s in�uence in �nance is pervasive and continues to 589

grow. Major �nancial institutions invest heavily in AI to improve pro- 590

ductivity, decision-making, and customer experience [8], [9]. Some 591

key applications and implications of AI in �nance include: 592

• Algorithmic Trading and Investment: AI-driven algorithms 593

now execute a signi�cant share of trades in stock, forex, and 594

other markets. These systems can analyse market data at su- 595

perhuman speeds and make rapid trading decisions based on 596

patterns or signals (sometimes in fractions of a second). Ma- 597

chine learning models also help in portfolio management by 598

predicting asset price movements or optimising asset allocations. 599

Hedge funds and investment �rms use arti�cial intelligence 600

models to design complex strategies that automatically adapt to 601

market conditions. The bene�t is more e�cient markets and 602

the ability to exploit very subtle ine�ciencies; however, it also 603

raises concerns about �ash crashes and the need for oversight, 604

as AI agents might collectively behave in unforeseen ways. 605

• Risk Management and Fraud Detection: Risk management 606

is central to �nance, and AI providesmore accurate and granular 607

risk models. For example, banks use machine learning to im- 608

prove credit scoring by analysing the data of a borrower in much 609

more detail than traditional linear models, allowing better pre- 610

dictions of default risk [6]. AImodels can incorporate alternative 611

data (such as online footprints or transaction history patterns) 612

to make credit decisions for people without extensive credit his- 613

tories, potentially expanding �nancial inclusion. In trading, AI 614

is used for real-time risk monitoring (e.g., calculating Value- 615

at-Risk with models that adapt to current volatility regimes). 616

Fraud detection is another critical area: credit card companies 617

and payment processors employ AI to detect fraudulent trans- 618

actions by recognising anomalies in spending behaviour. These 619
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models operate on streaming data, �agging suspicious activity620

(e.g., an unlikely location or high-value purchase) within mil-621

liseconds, often preventing fraud or limiting losses. By analysing622

vast amounts of transactional data, AI systems have achieved623

high accuracy in catching fraud while reducing false alarms,624

thus protecting consumers and institutions.625

• Automation of Processes (Robotic Process Automation -626

RPA): Finance has many repetitive, document-driven processes627

(e.g. mortgage approvals, insurance claim processing, account-628

ing reconciliations). Arti�cial intelligence, often in conjunction629

with RPA tools, is automating many of these back-o�ce opera-630

tions. For example, AI-powered document analysis can read and631

interpret forms, invoices, or contracts (using computer vision632

and NLP), extracting relevant information for further process-633

ing. A concrete case is an insurance company that uses arti�cial634

intelligence to automatically approve straightforward claims by635

analysing submitted documentation and cross-referencing the636

details of the policy. Automation reduces processing time from637

days tominutes andminimises human error. One reported e�ect638

is that employees can be redeployed from routine paperwork639

to more value-added or analytical tasks. Financial �rms see640

signi�cant cost savings and faster service delivery through these641

AI-driven e�ciencies.642

• Customer Service and Personalization: Just as in IT support,643

�nancial institutions use AI-powered chatbots to handle cus-644

tomer inquiries (e.g. balance requests, simple FAQs) through645

chat or voice, available 24/7. AI can also personalise �nancial646

advice: so-called ’robo-advisors’ provide automated investment647

advice tailored to the individual’s needs.648

Leaders in �nance view AI as essential: A Columbia Business649

School report notes that in 2023, �nancial services companies spent650

about $35 billion on AI, with that number expected to nearly triple651

to $97 billion by 2027 – the fastest growth of any major industry [9].652

The arms race in AI is driven by the competitive edge it provides:653

better predictions directly translate to pro�t in trading; better risk654

models mean lower losses and capital savings; better service results655

in happier customers and higher retention.656

At the same time, the adoption of AI in �nance is urging regulators657

to update frameworks. Issues such as algorithmic transparency, fair-658

ness in credit decisions, and the systemic risks of AI-driven markets659

are hot topics. Financial regulators are working to ensure that, as660

banks rely on AI, they still manage to explain decisions (for example,661

why someone was denied a loan) and maintain accountability. In662

general, AI in �nance increases human decision making with data-663

driven insights and e�ciency, but does not eliminate the need for664

human oversight. As one panel of industry experts put it, AI is ’a tool,665

like a screwdriver’ that can greatly enhance capabilities, but humans666

remain crucial for providing judgment and ensuring that AI’s output667

is applied correctly [1], [8].668

4.3. AI in Data-Driven Research and Science669

Beyond speci�c industries, AI has become a transformative tool in sci-670

enti�c research and any �eld that relies on extracting knowledge from671

large datasets (often referred to as "data science"). Researchers are672

increasingly using AI to handle data volumes and complexities that673

human analysis could never manage alone. Here are a few notable674

examples:675

• Healthcare andBiomedicalResearch: AI is accelerating drug676

discovery and genomics. For instance, deep learning models can677

screen billions of chemical compounds to predict which might678

have therapeutic e�ects on a target protein, dramatically nar-679

rowing down candidates for lab testing. In genomics, machine680

learning helps identify patterns in DNA that correlate with dis-681

eases, or predict the 3D structure of proteins (as demonstrated682

by DeepMind’s AlphaFold solving protein folding, which can683

aid in understanding diseases and developing drugs) [9]. AI 684

is also used in medical imaging: radiologists now have AI as- 685

sistants that can detect tumors or lesions in X-rays, MRIs, etc., 686

sometimes earlier or with equal accuracy to human experts [6]. 687

The implication is faster diagnoses and potentially new cures 688

discovered more quickly. Of course, these AI systems undergo 689

rigorous validation since lives are at stake, and they typically 690

assist rather than replace medical professionals. 691

• Scienti�c Research (Physics, Astronomy, Climate Science, 692

etc.): Many scienti�c domains have massive data streams – tele- 693

scopes surveying the sky, particle colliders generating collision 694

data, sensors monitoring the climate. AI is indispensable in an- 695

alyzing this data. In astronomy, AI models classify astronomical 696

objects (e.g., stars, galaxies, supernovae) in sky survey images 697

and have even been used to discover new exoplanets by sifting 698

through satellite data for the faint signatures of distant planets 699

[3]. In physics, AI helps identify rare events in particle collision 700

data that might indicate new particles or phenomena. Climate 701

scientists use AI to improve models for weather prediction and 702

climate projections by learning complex patterns from historical 703

data. What all these �elds have in common is that AI augments 704

human researchers’ ability to make sense of Big Data, often re- 705

vealing subtle patterns or correlations that a human might miss. 706

AI can also act as a "multiplicative" factor – for example, an AI- 707

driven simulation might allow exploring thousands of climate 708

policy scenarios quickly to predict potential outcomes. 709

• Data Analysis and Knowledge Discovery: Even in �elds like 710

social sciences or humanities, where data may be text, audio, or 711

video, AI is unlocking new kinds of analysis. Natural language 712

processing (NLP) can analyze millions of documents or social 713

media posts to identify trends in public opinion or trace the evo- 714

lution of ideas. An area known as "digital humanities" uses AI 715

to, for example, analyze literary texts for themes or patterns on 716

a scale previously impossible. In economics, AI models analyze 717

�nancial news and reports to quantify sentiment or predict eco- 718

nomic indicators. In all these cases, AI acts as an intelligent 719

assistant that can quickly summarize or �nd structures in over- 720

whelming amounts of information, which researchers can then 721

interpret. One often-cited bene�t is that AI can generate hy- 722

potheses by �nding unexpected patterns, which human experts 723

can then investigate further – e�ectively providing a new way to 724

derive insights from raw data. 725

A notable observation is that AI itself has become a subject of re- 726

search not only in computer science but across disciplines interested 727

in intelligence, cognition, and complex systems. For example, cogni- 728

tive scientists collaborate with AI researchers to use neural networks 729

as models to understand human cognition (comparing how an AI 730

vision model and a human brain respond to the same images, for 731

example). In economics and ethics, the rise of AI prompts research 732

into its societal e�ects. 733

In terms of implications for society, AI in research accelerates the 734

pace of discovery. Previously intractable problems (such as analysing 735

trillions of possible protein folds or simulating quantum chemistry 736

accurately) are now seeing breakthroughs [3], [9]. This means poten- 737

tial bene�ts such as faster development of medical treatments, more 738

accurate projections of climate change to inform policy, and a deeper 739

understanding of fundamental science. It also means that the skill 740

set for researchers is shifting: computational literacy and the ability 741

to leverage AI tools are becoming essential even in �elds that were 742

traditionally more theoretical or experimental. We are witnessing a 743

paradigm shift where discovery is increasingly data-driven, with AI 744

acting as the engine that sifts through the data [1], [6]. 745

In the domains of data research, AI serves as a powerful ampli- 746

�er of human analytical capabilities. It can be considered “the great 747

equaliser of big data,” turning the �ood of data we now collect into 748

actionable insights [9]. This has democratising e�ects too: An indi- 749
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vidual scientist or a small startup can now harness cloud AI services750

to analyse big data without needing a supercomputer of their own,751

lowering barriers to entry for innovation.752

Across IT, �nance, and research, a common theme emerges: AI753

systems excel at absorbing large amounts of data and identifying opti-754

mal patterns or actions, leading to greater e�ciency, personalization,755

and even new capabilities (such as forecasting that was previously756

unattainable). However, deploying AI on scale also raises important757

considerations, some of which we will discuss in the next sections on758

what AI is less capable of and the risks involved.759

5. Strengths of Contemporary AI760

Having explored where AI is applied, we now distill the types of tasks761

for which current AI techniques (especially machine learning and762

deep learning) are particularly well suited. The strengths of AI align763

with certain characteristics of problems, and recognising these helps764

in deciding when to employ AI solutions. In the following, we discuss765

several categories of tasks in which AI tends to perform exceptionally766

well, with examples from IT, �nance, and data science as illustrations.767

5.1. Pattern Recognition and Perception768

One of AI’s greatest strengths is identifying patterns in large and769

complex datasets, in many cases exceeding human ability in terms770

of precision, scale, or consistency. Deep learning, in particular, has771

revolutionised perceptual tasks:772

• In computer vision, AI models can recognise objects, faces, and773

scenes in images or videos with high accuracy. They can de-774

tect tumours on medical scans, read handwritten text, or mon-775

itor products on an assembly line for defects. Such visual pat-776

tern recognition tasks, which involve subtle variations and high-777

dimensional pixel data, play to the strengths of convolutional778

neural networks. For example, an AI vision system can be779

trained on millions of images to distinguish hundreds of cat780

breeds, a level of �ne-grained di�erentiation that a humanmight781

struggle with. Consistency is also a key factor: unlike humans,782

AI is not fatigued or less attentive after reviewing thousands of783

images.784

• In audio and speech, AImodels (such as recurrent or transformer785

networks) can recognise speech to transcribe it, identify speakers,786

or even detect emotion from tone. Tasks like converting speech787

to text (as used in virtual assistants or automated captioning) are788

now highly accurate. AI has also been used to detect patterns789

in sounds, such as identifying mechanical faults from engine790

noise or detecting calls of endangered animal species in audio791

recordings. Again, these are pattern recognition problems where792

AI can sift through more data than a human could and pick out793

telltale features.794

• In data science broadly, pattern recognition manifests itself as795

�nding correlations and clusters in data. For instance, in �nance,796

AI can detect patterns in transaction data that indicate fraud797

(as previously mentioned) or uncover nonobvious relations be-798

tween market indicators that support investment decisions. In799

IT operations, anomaly detection (for example, spotting patterns800

in system metrics that precede a failure) is a pattern recognition801

task in which AI excels [9].802

The underlying reason for AI prowess in these tasks is its ability to803

handle high-dimensional inputs and complex nonlinear relationships.804

Neural networks, with su�cient data, can approximate extremely805

complicated functions, which is necessary for tasks like image or806

speech recognition. Moreover, AI can integrate information from807

multiple sources (for example, a surveillance system that combines808

video and audio patterns). The key limitation - which we will revisit -809

is that this works best when ample labelled data is available to learn810

from, particularly in supervised settings.811

5.2. Processing Big Data Quickly and Efficiently 812

AI algorithms can sort and analyse vast amounts of data far faster 813

than humans. This makes AI indispensable for big data analytics. 814

Tasks that involve scanning millions of records to �nd insights or 815

scanning network logs for intrusion attempts are well-suited to AI 816

because: 817

• The volume of data is too large for manual analysis, but AI 818

thrives on volume. In fact, more data often improves the accu- 819

racy of an AI model. For example, a recommendation system on 820

an e-commerce platform may analyse browsing and purchase 821

data from hundreds of millions of user interactions to �nd pat- 822

terns such as ’people who buy X also like Y’. Doing this without 823

AI would be impossible, but a machine learning model (such 824

as matrix factorisation or a deep learning recommender) can 825

handle it and continuously update as new data come in. 826

• AI can handle the velocity of data, i.e., streaming data analysis. 827

In �nance, high-frequency trading algorithms can process mar- 828

ket tick data in microseconds and execute trades accordingly. 829

In IT monitoring, an AI system might continuously ingest log 830

streams and metrics, issuing an alert the moment an anomaly is 831

detected. Humans cannot match this real-time processing speed 832

when faced with such data �rehoses [6]. 833

• E�ciency and scalability: With appropriate hardware, AI com- 834

putations can be parallelised. GPUs can perform thousands 835

of operations in parallel, allowing AI models to process data 836

quickly. This is why tasks like training a deep network on Im- 837

ageNet (more than 14 million images) or translating an entire 838

Wikipedia-worth of text are feasible with AI. From a business 839

standpoint, tasks that previously required large analysis teams to 840

combing data can now be done with an AI system and a handful 841

of analysts to interpret results, signi�cantly reducing cost and 842

time. 843

An example of data research: AI models have been used to anal- 844

yse the equivalent of 100,000 years of climate simulation data in a 845

short time, identifying patterns of extreme weather events [9]. This 846

demonstrates how AI does not get overwhelmed by the data scale. 847

In fact, AI often �nds subtle signals precisely using the scale (e.g., 848

identifying a 0. 1% occurrence pattern that is only noticeable when 849

you have millions of samples). 850

5.3. Automation of Repetitive and Structured Tasks 851

AI is well-suited for tasks that are routine, repetitive, or structured 852

– especially those that involve making numerous small decisions or 853

classi�cations based on data. Some examples include: 854

• Data entry and processing: AI-powered optical character 855

recognition (OCR) can read documents and digitise them, a 856

task that once required an army of typists. Now, entire archives 857

can be digitised with minimal human intervention. Similarly, 858

AI can reconcile invoices, match records, or �ag inconsistencies 859

in large datasets – tasks traditionally performed by clerks. 860

• Manufacturing and Robotics: In manufacturing settings, 861

robots equipped with AI vision can pick and sort objects, assem- 862

ble components, or inspect products for quality at high speed. 863

These tasks are repetitive (involving the same movements or 864

checks on thousands of parts) and structured (with a controlled 865

environment), making them ideal for AI automation. The result 866

is often higher throughput and precision. For example, an AI 867

robot might place components with sub-millimeter accuracy 868

consistently, reducing error rates. 869

• Customer interaction automation: AI chatbots handle repet- 870

itive customer queries (“What’s my balance?”, “When will my 871

order arrive?”) multiple times a day. AI can answer these queries 872

consistently and instantaneously, functioning like a tireless em- 873

ployee. Many companies report that AI chatbots resolve a large 874
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percentage of customer queries without needing human escala-875

tion, thus dramatically scaling their support capacity.876

• Email �ltering and routing: A common example is spam877

�lters in email. AI �lters out junk mail with high accuracy by878

learning patterns of spam. Similarly, AI systems in enterprises879

automatically categorise and route emails or support tickets to880

the appropriate department (sales inquiry, technical support,881

billing issue, etc.) by analysing the content. These mundane882

tasks are handled invisibly byAI in the background to streamline883

work�ow.884

The advantage of AI in these tasks is not only labour saving, but885

also consistency and speed it brings. AIs do not get bored or tired,886

so repetitive tasks performed by AI will have a low error variance.887

As noted in the context of the AEC (architecture, engineering, con-888

struction) industries, AI signi�cantly boosts productivity by taking889

on mundane tasks, for example, generating routine design documen-890

tation or performing cost estimations, allowing professionals to focus891

on creative or complex aspects [6], [9]. In an HR example, AI might892

screen resumes to shortlist candidates based on set criteria, doing893

what could take a recruiter many hours.894

5.4. Prediction and Forecasting895

AI systems, particularly machine learning models, excel at making896

predictions fromhistorical data. If a task can be framed as ’given these897

inputs, predict that output’, and there are many examples to learn898

from, supervised learning often produces a model that outperforms899

traditional statistical methods. Some examples include:900

• Predictivemaintenance: In industry, AI models predict when901

machines or components are likely to fail by learning from sensor902

data patterns that preceded past failures. This allows compa-903

nies to replace or service equipment before if a failure occurs,904

minimising downtime. For example, an AI might monitor vi-905

bration and temperature readings from a turbine and predict a906

failure two weeks in advance with high con�dence, scheduling907

maintenance proactively [6].908

• Demand forecasting: Retailers use AI to forecast product de-909

mand at a granular level. Traditional forecasting might look910

at monthly sales; AI can predict daily or even hourly demand911

for each store and each product by considering factors like pro-912

motions, weather, local events, etc. This �ne-grained forecast913

optimises inventory levels, ensuring that shelves are stocked but914

not overstocked. Amazon, for example, uses AI for ’anticipatory915

shipping’ – predicting what you will order and moving it to a916

nearby warehouse even before you order, based on patterns.917

• Financial forecasting: AI is used to predict stock prices, mar-918

ket trends, credit defaults, and macroeconomic indicators. Mod-919

els can incorporate a multitude of signals – technical indicators,920

sentiment from news, historical correlations – to make short-921

term or long-term forecasts. Although not infallible, these mod-922

els often capture complex relationships that simplermodelsmiss,923

giving �nancial �rms an edge. For example, an AI might predict924

intraday price movements for dozens of stocks simultaneously,925

helping a trading desk position itself advantageously [3].926

• Personalization (predicting user preferences): When Net-927

�ix or YouTube recommends content, or a music app creates a928

’discover weekly’ playlist for you, it essentially predicts what you929

will like based on past behaviour. AI recommendation engines930

predict the rating or click-through probability for each user-item931

pair and then present the top predictions. This predictive ability932

to tailor experiences is a major strength of AI. It has a wide usage933

across domains from e-commerce (predicting which product a934

user is likely to buy next) to online advertising (predicting who935

will click on an ad) [9].936

What sets AI prediction apart is its ability to model very complex,937

non-linear interactions in the data. Traditional forecasting might rely938

on linear regression or time series models like ARIMA, which have 939

limitations. AI can ingest many more variables and �nd hidden non- 940

linear e�ects (e.g., how the combination of weather, day of week, and 941

a speci�c promotion drives sales in a particular store). Furthermore, 942

AI can update predictions in real-time as new data comes in, which 943

is critical in dynamic environments. 944

However, it is important to monitor such models because if con- 945

ditions change (e.g., a pandemic radically changes consumer be- 946

haviour), the patterns learnt from history may no longer hold - some- 947

thing we will touch on when discussing limitations like generalisa- 948

tion. 949

Task Type AI Excels At Examples and Domains

Pattern Recognition Image classi�cation in diagnostics, speech
recognition (e.g., virtual assistants), and
anomaly detection in network tra�c.

Large-Scale Data Analysis Real-time fraud detection on large �nancial
datasets, customer segmentation in market-
ing, and scienti�c data mining in astronomy
and genomics.

Repetitive Task Automation Quality inspection inmanufacturing, chatbots
for routine queries, and automated data entry
via OCR in enterprise settings.

Predictive Modeling Predictive maintenance in utilities, personal-
ized content recommendation systems, and
demand forecasting in retail logistics.

Complex Decision-Making and
Optimisation

Strategic game AI (e.g., Go, StarCraft), portfo-
lio optimisation in �nance, and routing opti-
misation for delivery logistics.

Table 2. Illustrative examples of domains where AI systems are particularly
e�ective.

5.5. Handling Complexity and Multivariate Relationships 950

Finally, AI excels in domains that are too complex for explicit human 951

reasoning. In many cases, there are problems without an analytic 952

solution or an easy rule-based approach, but AI can approximate a 953

solution by brute-force learning. 954

An example is in ’playing the game’: For games like Go or chess, 955

the number of possible states is astronomical. Traditional algorithms 956

struggled with Go until deep reinforcement learning emerged to ap- 957

proximate the value of positions and policies through self-play. The 958

success of AlphaGo highlighted how AI can handle immense combi- 959

natorial complexity, discovering strategies that even human champi- 960

ons had not considered [9]. Similarly, in multiplayer video games or 961

complex simulations, AI agents learn to navigate environments that 962

have enormous state spaces and interacting factors. 963

In engineering design and optimisation, AI techniques can tackle 964

multiobjective optimisation problems. For example, designing an 965

aircraft component involves trade-o�s betweenweight, strength, aero- 966

dynamics, cost, and more. AI (including techniques such as genetic 967

algorithms or neural networks) can search this complex design space 968

to propose solutions that meet all criteria, some of which a human 969

designermight not have conceived. The phrase ’AI can explore numer- 970

ous design possibilities much faster and more extensively than before’ 971

has been observed in the context of AEC (architecture, engineering, 972

construction) [3], [6]. 973

Another area is multivariate analytics – where outcomes depend 974

on many interdependent variables. For example, in medicine, pre- 975

dicting disease progression might depend on genetic factors, lifestyle, 976

environment, etc., in highly nonlinear ways. Arti�cial intelligence 977

models (such as deep networks) can integrate these multivariate rela- 978

tionships. They might identify that a combination of subtle readings 979

in blood tests, when seen together, is predictive of a certain condition 980

-something that no single medical indicator reveals on its own. 981

To illustrate in a data science context, consider trying to model 982

customer churn for a subscription service. Churn might depend 983

on dozens of features, such as usage frequency, customer service 984

interactions, demographics, and competitor presence, with complex 985

interactions (e.g., high usage might usually indicate loyalty, but if 986
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accompanied by repeated service complaints, it might predict churn).987

An AI model can learn this intricate interplay automatically, whereas988

a manual analysis might miss such second-order combinations.989

Tasks characterised by high-dimensional data, complex rules, or990

massive possibilities, where writing a �xed programme would be991

impractical, are fertile ground for AI. These are precisely the scenarios992

where AI’s ability to learn and adapt gives it an advantage. Table 2993

summarises some of the tasks and examples of AI’s strengths.994

5.6. Lack of Contextual Understanding and Common Sense995

Perhaps the most notorious weakness of AI is its lack of genuine996

understanding. AI models don’t possess common sense - the basic997

level of practical knowledge about the world that humans take for998

granted. They also do not truly grasp context ormeaning; they operate999

on surface correlations in data. This leads to a variety of issues.1000

• Misinterpretation of language or vision without context:1001

Natural language processing models might interpret a sentence1002

literally and miss the implied meaning, sarcasm, or cultural ref-1003

erences that a human would catch. For example, an AI assistant1004

might interpret ’Can you tell me how to get out of a speeding1005

ticket?’ as a factual query about legal procedure, while a human1006

might recognise it as someone looking for unethical advice (or1007

a joke). AI lacks the situational awareness to navigate such nu-1008

ance. Similarly, in computer vision, an AI might correctly label1009

objects in an image but may not understand the situation de-1010

picted: it may see people running and classify it as’sport’ when,1011

in fact, they are �eeing danger.1012

• Failure at reasoning tasks that require understanding of1013

concepts: AI is famously struggling with seemingly simple com-1014

mon sense questions. For example, a classic example: if I put1015

my socks in a drawer and close it, then I open the drawer later,1016

are the socks still there? A human knows that the socks will1017

still be there; an AI language model might get this right, but1018

not because it ’knows’, rather than because it has seen similar1019

statements during training. If posed di�erently (“I put my socks1020

in the drawer, went away for a week, and no one touched the1021

drawer; Where are my socks?”), some AIs might still get the an-1022

swer wrong. A large-scale test known as the ’Winograd Schema1023

Challenge’ (a common-sense-requiring pronoun understanding1024

test) has been tough for AI. Although there is progress with enor-1025

mous language models, they still make mistakes that reveal a1026

shallow grasp of meaning.1027

• Rigidity and literalism: Because AI does not have a true un-1028

derstanding, it cannot easily adapt instructions to intent. If you1029

slightly misinterpret an input, an AI might fail where a human1030

would infer your intent. For example, an AI home assistant may1031

not turn o� the lights when you say ’I am going to bed now’ be-1032

cause it was not explicitly told as a command, whereas a human1033

butler would get the hint. An example from an educational blog1034

notes that AI responses can feel ’robotic and impersonal, lacking1035

depth of human interaction,’ precisely because they do not grasp1036

the emotional or contextual subtext [9].1037

• No true understanding of causality: AI often confuses corre-1038

lation with causality. You may notice that in training data, when1039

the grass is wet, it usually rains. But if you then water the lawn1040

with a hose (wet grass without rain), a naive AI weather system1041

might erroneously predict rain. Humans understand causes; AI1042

largely does not, unless explicitly trained in causal inference1043

(which is an active research area, but not solved). This ties into1044

issues like susceptibility to spurious correlations: an AI might1045

predict that a customer will default on a loan because they use1046

all caps in their emails (perhaps that correlated in historical data1047

for some odd reason), which is clearly not a causal factor but1048

could slip into a model if not carefully controlled.1049

The root of these issues is that current AI lacks a model of the1050

world. It does not know physics, social norms, or basic facts unless1051

those were implicitly encoded in the training data and model weights. 1052

There is an infamous quote: “AI is only as good as its data”; If the 1053

data do not cover some scenario or contain some knowledge, the AI 1054

is unaware of it. Humans, on the other hand, have broad common 1055

sense knowledge. For instance, we know that objects fall down, not 1056

up, that people have motivations, that time has an order, etc. AI 1057

inherently does not know all that. 1058

This can lead to dangerous mistakes. Consider an AI vehicle that 1059

does not grasp context: a pedestrian waving might be interpreted 1060

by vision as simply ’person’ without recognising that waving means 1061

’go ahead’ or ’thank you’. Or an AI content �lter might ban a post 1062

discussing violence in a historical context because it sees violent 1063

words without the context that it is educational. 1064

Researchers attempt to inject common sense into AI by building 1065

knowledge graphs or training onmassive datasets (the hope is that AI 1066

will implicitly absorb some common sense). Large language models 1067

have in fact learnt a lot of factual knowledge (it’s stunning that they 1068

can answer trivia). However, they still lack a deeper understanding. 1069

One blog on AI limitations succinctly stated: “AI systems struggle 1070

with context understanding and lack common sense reasoning... lim- 1071

iting their ability to interpret complex human language and emotional 1072

nuances” [9]. The consequence is that for any situation requiring 1073

�exible, context-aware reasoning or creativity, humans still have a 1074

de�nitive edge over AI. 1075

5.7. Data Dependency and Bias 1076

AI’s capabilities fundamentally hinge on data – “garbage in, garbage 1077

out” remains a pertinent adage. There are several facets to this: 1078

• Data Hunger: Most AI models require large amounts of data to 1079

train e�ectively. In domains where data are scarce or expensive 1080

to obtain, AI models may perform poorly. For example, develop- 1081

ing anAI diagnostic for a very rare disease is challenging because 1082

there are not enough case examples to learn from. In contrast, 1083

humans can sometimes generalise from just a few examples by 1084

applying prior knowledge. AI often lacks that, unless transfer 1085

learning is feasible from a related domain. 1086

• Sensitivity to Data Quality: If the training data contain errors, 1087

noise, or inconsistencies, the AI will learn from those as well. 1088

Amodel might latch onto random �uctuations as if they were 1089

meaningful (over�tting), leading to poor performance on new 1090

data. Also, if the data collection process changes over time (e.g., 1091

a di�erent sensor is used, or a survey question is re-worded), the 1092

model might start failing unless re-trained. Essentially, AI is 1093

as good as the signal in the data; it cannot magically overcome 1094

fundamentally bad data. 1095

• Bias in Data leading to Biased AI: AI systems notoriously 1096

inherit biases present in their training data [9]. If historical data 1097

re�ect human biases or systemic biases, AI will often reproduce 1098

or even amplify them. For example, a hiring algorithm trained 1099

on past hiring decisions at a companymight learn to discriminate 1100

against candidates from a group that was historically underhired, 1101

not because that trait impacts job performance, but because 1102

of bias in the historical decisions. There have been multiple 1103

high-pro�le cases: facial recognition systems less accurate on 1104

darker-skinned individuals because the training set was skewed 1105

towards lighter-skinned faces; or language models generating 1106

stereotypical or derogatory text about certain groups because of 1107

biased text in their training corpus. This is a serious limitation 1108

because it can lead to unfair or unethical outcomes if arti�cial 1109

intelligence is used in decisionmaking (e.g., credit, employment, 1110

and police). Ensuring fairness requires careful data curation and 1111

algorithmic bias mitigation, which is an active area of research 1112

and policy [3], [6]. 1113

• Lack of Adaptability to Data Shifts without Retraining: If 1114

the world represented by the data changes (known as ’concept 1115

drift’), AI models typically will not adjust on their own unless 1116
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they are explicitly retrained with new data. For example, an AI1117

trained to predict consumer preferences in 2019might have been1118

thrown o� by the radically di�erent patterns during the 20201119

pandemic. Humans can often adapt quickly by recognising the1120

change in context, but an AI could continue making predictions1121

as if nothing changed, yielding poor results. Regular retraining1122

and model monitoring are required to keep AI systems relevant,1123

which is an overhead that is sometimes not fully appreciated.1124

These issues underscore that AI is not one-and-done software that1125

you can set and forget; it is part of a data ecosystem. The phrase ’data1126

dependency’ also implies that AI performance is upper bound by the1127

content of the information in the data. If some critical factor is not1128

captured in the data, the AI cannot learn it. For example, if medical1129

records lack a certain symptom because doctors did not record it, an1130

AI predicting diagnosis might completely miss the relevance of that1131

symptom.1132

Data problems also cause AI to sometimes make obvious mistakes1133

to humans. For example, an image classi�er might label a picture of a1134

panda as a gibbon because some statistical quirkmisled it – something1135

a human would almost never do because we intrinsically know what1136

a panda looks like. An analysis of such errors often reveals an odd1137

pattern in the training data or a heavy reliance on a background1138

detail rather than the object shape (e.g., the panda was misclassi�ed1139

because of foliage that looked like the background in many gibbon1140

photos). AI does not have the innate category concept, just statistical1141

associations.1142

AI’s dependence on data is a double-edged sword: it is the source1143

of its power (learning from data rather than requiring explicit pro-1144

gramming), but also a source of vulnerability - to bias, errors and1145

context changes. Identifying data issues is arguably the most impor-1146

tant part of any AI project. As one resource put it, ensuring diverse1147

and representative data and robust training is key to mitigate unfair1148

or erroneous outcomes [9].1149

5.8. Opacity and Lack of Interpretability1150

Most high-performing AI models today, especially deep neural net-1151

works, are often described as black boxes. That is, they can be ex-1152

tremely hard to interpret: we feed in an input, get an output, but have1153

little insight into how or why the model produced that output. This1154

lack of transparency or interpretability is a signi�cant limitation in1155

the domains where understanding the decision process is important.1156

There are several reasons interpretability matters:1157

• Trust and Veri�cation: In sensitive applications such as1158

healthcare or criminal justice, we cannot take the word of an1159

AI without justi�cation. A doctor needs to know why an AI1160

recommended a certain diagnosis to trust it and act on it (did it1161

�nd a pattern on the MRI that correlates with a disease, or did1162

it latch onto an artefact in the image?). If an AI judge-assistant1163

tool predicts that a defendant is a high �ight risk, the judge1164

must understand the reasoning. The opacity of AI currently1165

makes it di�cult to fully trust, as it can base decisions on spuri-1166

ous correlations or biases that we would not accept if we knew.1167

One source notes that when people don’t understand how an AI1168

makes decisions, they are reluctant to use it [9]. In fact, the lack1169

of interpretability causes a ’black-box e�ect’, which can erode1170

con�dence and hinder adoption.1171

• Debugging and Error Analysis: When an AI system makes a1172

mistake, it is often non-trivial to �gure out exactly what went1173

wrong internally. If a neural network misclassi�es an image, we1174

cannot simply inspect a few weight values and immediately see1175

the error. We might have to resort to techniques like saliency1176

maps (to see which pixels in�uenced the decision) or analyse1177

the training data in�uences. This is an active area of research1178

(Explainable AI, or XAI), which aims to provide explanations for1179

model behaviour [3]. Until we have better interpretability tools,1180

there is a risk that AI systems harbour hidden failure modes that 1181

we only discover in operation. 1182

• Accountability and Ethics: If an AI system causes harm (e.g., 1183

a self-driving car has an accident or an AI incorrectly denied 1184

someone a loan), who is responsible? Part of that question is 1185

related to being able to explain what the AI did and whether 1186

it followed acceptable rules. Currently, many AI decisions are 1187

not easily backtrackable in human terms, which complicates 1188

accountability. It also challenges regulations such as the EU 1189

GDPR, suggesting that individuals have a right to an explanation 1190

for decisions made about them by algorithms. 1191

• Overreliance Risk (“Automation Bias”): Paradoxically, the 1192

better AI is, the more people could overrely on it without ques- 1193

tion. If a system is usually right, humans can start rubber stamp- 1194

ing its decisions, even when it is wrong (this is known as au- 1195

tomation bias). Studies have shown, for example, that physicians 1196

assisted by an AI diagnostic might ignore contrary clinical evi- 1197

dence if the AI gives a certain result, especially if they cannot 1198

pinpoint why the AI could be wrong [9]. Overreliance can be 1199

mitigated if AI provides understandable reasons or uncertainty 1200

estimates, but with black-boxmodels, users might either distrust 1201

them too much or trust them too much, both problematic. The 1202

Stanford HAI article on AI overreliance indicates that explain- 1203

ability is being looked at as a solution to prevent people from 1204

blindly trusting the output of an AI [9]. 1205

The black-box nature is particularly acute with deep learning. A 1206

deep neural net might have millions of parameters that form a com- 1207

plex nonlinear function; trying to directly understand how it makes 1208

decisions is extremely di�cult; it is essentially a high-dimensional 1209

mathematical transformation without semantic annotations for each 1210

part. This is unlike a decision tree or linear model, where one could 1211

trace a path or weight to see the in�uence. Many are calling for ’Ex- 1212

plainable AI’, wheremodels are inherently interpretable or comewith 1213

tools that explain their reasoning in human terms [3]. 1214

There has been progress: techniques such as LIME or SHAP ap- 1215

proximate features that strongly in�uenced a particular decision; 1216

deep networks can be probed to see what internal neurones respond 1217

to (e.g., one might respond to ’this looks like a human face’ and an- 1218

other to ’this looks like text’ within an image, giving some insight). 1219

But these are imperfect and sometimes themselves hard to interpret. 1220

The bottom line is that current mainstream AI often lacks a clear 1221

explanation for its outputs. This is often summarised as the “black 1222

box problem” and is considered one of the main challenges to wider 1223

adoption in �elds such as healthcare and �nance [9]. As noted in 1224

a resource from PSMJ, the complex AI decision making process is 1225

not easily interpretable for humans, leading to a delay in use [9]. 1226

Another quip is that deep learning models are like a super-intelligent 1227

student who aces the test but you have no idea how they arrived at 1228

the answers. 1229

This limitation reinforces the notion that for critical decisions, AI 1230

should augment rather than replace human judgment until we can 1231

verify and explain what it is doing. It’s an area where sometimes 1232

simpler or more interpretable models are chosen over an inscrutable 1233

complex model, sacri�cing a bit of accuracy for transparency – espe- 1234

cially in regulated industries (this trade-o� is an ongoing discussion 1235

in the AI community and among regulators). 1236

5.9. Creativity, Emotions, and Security 1237

There are a few additional areas where AI is commonly said to be 1238

weak: 1239

• True creativity and intuition: While AI can generate art, mu- 1240

sic, or text that appears creative (e.g., procedural game content or 1241

AI-generated paintings), it doesn’t have creativity in the human 1242

sense of intentional novelty or emotional depth. AI generation 1243

is based on recombination of patterns from training data, not 1244
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genuine inspiration or understanding of aesthetic value. Thus,1245

AI might produce a hundred variations of a melody, but choos-1246

ing one that evokes a particular feeling or �ts a cultural context1247

is still a human strength. Similarly, AI-written prose might be1248

grammatically perfect but often lacks the coherent intentional1249

narrative that a human author provides. An AI could produce1250

a “remix” of Shakespeare-style text, but it isn’t going to invent1251

a wholly new literary genre with purpose. As noted in a PSMJ1252

resource, AI struggles with tasks requiring true creativity and1253

intuition [9].1254

• Emotional intelligence and empathy: AI does not have emo-1255

tions or empathy. It can simulate empathetic responses to some1256

degree (e.g., a chatbot can be programmed to say “I’m sorry1257

to hear that, that must be di�cult”), but it doesn’t genuinely1258

understand or share feelings. In domains like mental health1259

counseling or even customer service, this is a limitation – AI can1260

o�er facts or basic supportive phrases, but it cannot truly com-1261

fort or build rapport in the way a person can. This can make AI1262

interactions feel unsatisfying or even inappropriate in sensitive1263

situations. As PSMJ pointed out, current AI has “zero emotional1264

intelligence” [6]. It cannot gauge a person’s mood beyondmaybe1265

analyzing tone of voice or facial expression, and even then, it1266

doesn’t feel anything about it. This is why roles requiring hu-1267

man connection (like therapy, or negotiations) remain largely1268

human.1269

• Security and adversarial robustness: AI models, especially1270

neural networks, have a peculiar vulnerability: they can be1271

fooled by adversarial examples. These are inputs that have been1272

subtlymodi�ed tomislead theAIwhile appearing almost normal1273

to a human. A classic example: adding an almost imperceptible1274

noise pattern to an image of a stop sign can make an AI classi-1275

�er see it as a speed limit sign, whereas any human still sees a1276

stop sign [9]. This is a serious concern for security – imagine1277

malicious actors causing an AI system to misclassify a critical1278

input (e.g., making a biometric security system mistake one per-1279

son for another via a specially crafted accessory, or causing an1280

autonomous car to mis-read tra�c signs using carefully placed1281

stickers). AI tends to rely on all sorts of minute cues in data;1282

adversaries can exploit that since the AI has no common sense1283

to say “that’s clearly still a stop sign despite the sticker.” Ensur-1284

ing AI is robust to such perturbations is hard. Additionally, AI1285

systems could be attacked by feeding them harmful data during1286

training (data poisoning attacks) which inject biases or back-1287

doors. The bottom line is AI opens new attack surfaces, and the1288

technology to secure and harden AI models is still maturing [3].1289

• Resource intensity and environmental cost: Training large1290

AI models, especially deep learning models with billions of pa-1291

rameters, is extremely computationally intensive. This has prac-1292

tical and environmental downsides. Practically, not every organi-1293

zation can a�ord the hardware or cloud compute to train or even1294

deploy these models (creating a bit of an AI divide). Environ-1295

mentally, the energy consumption is a concern – some estimates1296

claim that training a single big transformer model can emit as1297

much carbon as �ve cars in their lifetimes. While this is more1298

about current implementation than a fundamental inability, it’s1299

a limitation in the sense that we can’t arbitrarily scale models1300

without thinking of energy and cost. There is active research1301

on making AI more e�cient (model compression, better algo-1302

rithms), but as of now one could say a limitation is that “Some1303

AI models require substantial computational power and energy1304

resources, posing environmental and �nancial concerns” [9].1305

Given these limitations, an overarching theme emerges: Current1306

AI systems are narrow specialists without a deeper understanding or1307

adaptability. They do speci�c tasks in controlled conditions very well1308

but break down outside those conditions, cannot explain themselves1309

well, and cannot autonomously transfer their learning to radically1310

new tasks in the way humans can. They also lack the emotional and 1311

ethical judgment that humans apply in many decisions. 1312

Recognising these limitations is crucial for responsible use of AI. 1313

It guides us to keep humans in the loop in critical applications, to 1314

use AI for what it is good at (data-driven pattern recognition and 1315

automation) and not for what it is bad at (open-ended judgment, 1316

understanding context, making ethical decisions). It also directs 1317

research: huge e�orts are under way in the community to address 1318

interpretability, fairness, robustness, and generalisation so that future 1319

AI might overcome some of these issues. 1320

In the next section, we will synthesise why, given all these weak- 1321

nesses, AI is not always the correct or complete solution to a problem 1322

and how to decide when traditional methods or human-driven ap- 1323

proaches are preferable or needed in complement to AI. 1324

6. Why AI Is Not Always the Right Solution 1325

Arti�cial Intelligence, for all its remarkable achievements, is not a 1326

magic wand suitable for every problem. In concluding this report, 1327

we re�ect on why AI should be applied judiciously and why some- 1328

times a conventional approach or a human-driven process is better. 1329

Overreliance on AI without understanding its limitations can lead to 1330

negative outcomes or missed opportunities for simpler solutions. In 1331

the following, we summarise key points and guiding principles. 1332

6.1. The Risk of Overreliance and Automation Bias 1333

As AI systems become more prevalent and occasionally outperform 1334

humans, there is a temptation to entirely eliminate decision mak- 1335

ing to them. However, as discussed, AI can fail in unanticipated 1336

ways – and if humans have become too reliant, these failures can 1337

be catastrophic. A cautionary example can be drawn from aviation: 1338

sophisticated autopilot AIs �y planes most of the time, which has 1339

improved e�ciency and safety, yet when something goes wrong, pi- 1340

lots must quickly step in. If pilots become too dependent and let 1341

their skills atrophy, they may not respond e�ectively in an emergency. 1342

Similarly, in medicine, a doctor who does not critically follow an AI 1343

diagnosis could mismanage a case if the AI is wrong. 1344

The phenomenon of humans trusting AI recommendations even 1345

when wrong - because AI is usually right – has been documented 1346

[9]. To mitigate this, organisations must ensure that AI is used as a 1347

tool with human oversight. Explainability and user training can help 1348

users know when to ask AI [6]. For instance, if a loan approval AI 1349

�ags an applicant as high-risk, a loan o�cer should review the factors 1350

(perhaps the AI provides a pro�le) and use judgment, rather than 1351

blindly accepting it. Maintaining healthy scepticism and verifying AI 1352

output against common sense or additional evidence is critical. 1353

In scenarios involving life, liberty, or signi�cant rights (e.g., crim- 1354

inal justice, medical diagnosis), fully autonomous AI decisions are 1355

ethically problematic at current capability levels. There should al- 1356

ways be a human responsible for �nal decisions. Overreliance can 1357

also cause the so-called “human-out-of-the-loop” problem – where 1358

no one really understands or monitors what the AI is doing. This 1359

was a factor in some �nancial �ash crashes where trading algorithms 1360

interacted in unforeseen ways while humans were too removed to 1361

intervene in time. 1362

6.2. When Traditional Methods Are Preferable 1363

Sometimes, the complexity of an AI solution is not warranted. A 1364

simpler rule-based system or statistical model may su�ce and often 1365

proves to be more transparent, easier to maintain, and less dependent 1366

on large datasets. For example, if a basic logistic regression using 1367

three features achieves precision 95%, there may be little practical 1368

bene�t in deploying a black-box neural network that improves perfor- 1369

mance to 97%, but requires ten times more data and computational 1370

resources and o�ers far less interpretability. 1371

In domains with regulatory constraints, such as banking and insur- 1372

ance, the ability to explain is often a legal or operational requirement. 1373
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In these cases, a modestly performing yet interpretable model may1374

be the only viable option, even if a more complex AI system performs1375

marginally better.1376

In low-data regimes, sophisticated AI models tend to over�t or gen-1377

eralise poorly. In such contexts, domain expertise and �rst-principles1378

reasoning can outperform machine learning. For example, in en-1379

gineering scenarios where only a handful of prototypes have ever1380

been constructed, physics-based simulations and expert intuition1381

are usually more reliable than data-driven approaches. Similarly,1382

traditional software with explicitly coded rules may be preferable in1383

deterministic environments. A rule-based fraud detection system,1384

while less adaptive, will only �ag events based on prede�ned logic,1385

avoiding unpredictable behaviour that a machine learning model1386

might exhibit when encountering rare or anomalous patterns.1387

Furthermore, deploying AI costs an overhead. The cost and time1388

associated with collecting high-quality data, training models, vali-1389

dating performance, and maintaining systems in production can be1390

signi�cant. If a task can be adequately addressed with a simple script1391

or amathematical formula, then it ismore e�cient and appropriate to1392

avoid AI. As the saying goes, ’don’t use a cannon to shoot a mosquito’1393

- in some scenarios, AI is exactly that cannon.1394

6.3. Ethical and Societal Considerations1395

AI is not just a technical instrument; it is also a sociotechnical system1396

with wide-ranging implications. One prominent concern is the dis-1397

placement of jobs. As AI automation accelerates, certain roles may1398

become obsolete, raising questions about the future of a�ected work-1399

ers. Overreliance on AI can lead to workforce deskilling, as observed1400

in contexts such as aviation and healthcare, where professionals may1401

lose pro�ciency when routine tasks are consistently delegated to ma-1402

chines. Organisations adopting arti�cial intelligence (AI) should1403

therefore consider parallel strategies for workforce development, in-1404

cluding retraining and upskilling. Ideally, AI should augment human1405

work, taking over dull, dangerous, or highly repetitive tasks, while1406

leaving roles that require creativity, empathy, and nuanced judgment1407

to humans.1408

There is also a risk of AI misuse or over-extension — the deploy-1409

ment of AI in domains where its application may be technically possi-1410

ble but ethically inappropriate. For example, the city-wide implemen-1411

tation of facial recognition technologies can help law enforcement,1412

but without appropriate safeguards, such systems risk infringing on1413

civil liberties and perpetuating biased enforcement practices [3]. In1414

such cases, the responsible course may be to forgo AI deployment1415

altogether, recognising that not all problems require algorithmic so-1416

lutions.1417

Another key limitation is the lack of nuance in AI-driven decision1418

making. Life-a�ecting decisions such as parole eligibility, job inter-1419

views, or university admissions involve context-sensitive evaluations1420

and moral considerations that cannot be fully encapsulated by the1421

objective function of an algorithm. AI may optimise a narrow de�ni-1422

tion of success but ignore qualitative and contextual factors to which1423

humans are better equipped to weigh. Human judgment - despite its1424

imperfections - can accommodate values, principles, and empathy in1425

ways that AI systems cannot.1426

As an industry leader cautioned: ’you need to be careful not to stop1427

at every shiny object out there... and you cannot just drop everything1428

[else]’ [3]. In other words, the existence of a sophisticated AI tool1429

does not necessarily mean that it is the right tool for all problems.1430

Maintaining a critical perspective and ethical awareness is essential1431

to ensure that AI serves human values rather than displacing them.1432

6.4. Building Resilient, Hybrid Approaches1433

Given the well-documented limitations of AI, a prudent strategy in1434

many applications is to adopt a hybrid approach — one that com-1435

bines AI systems with rule-based components and human oversight.1436

For example, a medical diagnosis platform might employ AI to anal-1437

yse imaging data, a symbolic knowledge system to cross-reference1438

symptoms with known conditions, and a physician to make the �- 1439

nal decision. In �nancial services, anomaly detection algorithms 1440

can �ag suspicious transactions, which are then reviewed by human 1441

investigators. 1442

These hybrid designs aim to capture the strengths of each compo- 1443

nent: the scalability and e�ciency of AI, and the contextual aware- 1444

ness and ethical judgment of human operators. In addition, such 1445

systems o�er resilience. When an AI model encounters a low con�- 1446

dence scenario, it can defer the decision to a human expert, a model 1447

design principle commonly referred to as human-in-the-loop or a 1448

rejection option. 1449

Robust AI deployments should also incorporate explicit failsafes. 1450

For example, if a self-driving vehicle encounters environmental con- 1451

ditions outside its training distribution, such as extreme weather or 1452

novel road con�gurations, it should default to a minimal risk mode 1453

or return control to the human driver. Some real-world incidents 1454

involving autonomous systems have been attributed to the failure to 1455

detect operational uncertainty. Such failure modes can be mitigated 1456

by designing systems that explicitly detect and �ag unfamiliar or 1457

high-risk input. 1458

A related design philosophy is that of incremental adoption. Rather 1459

than fully automating complex processes in a single step, AI capa- 1460

bilities can be gradually introduced. An initial deployment might 1461

operate in a purely advisory role while humans remain in full control. 1462

The performance of the system can then be monitored and validated 1463

in real-world conditions before expanding the autonomy of the AI. 1464

This staged integration builds trust and provides opportunities to 1465

re�ne system behaviour prior to critical reliance. 1466

Hybrid approaches are not merely a stopgap—they represent a 1467

principled framework for deploying AI in high-stakes environments. 1468

By combining automation with human oversight and procedural 1469

safeguards, they o�er a pathway to safer, more trustworthy, and more 1470

responsible AI systems. 1471

6.5. Staying Aware of AI’s Limits 1472

Continued education and awareness are essential for responsible use 1473

of AI. Stakeholders, including developers, managers, policy makers, 1474

and end-users, must understand both the capabilities and limitations 1475

of the technology. It is encouraging that many organisations now 1476

establish ethics boards or AI governance frameworks. These typically 1477

require testing systems for bias, fairness, and robustness prior to de- 1478

ployment, as well as ongoing monitoring to detect performance drift 1479

or emerging failure modes. In some sectors, regulators require model 1480

validation and auditability to ensure accountability in algorithmic 1481

decision making [9]. 1482

AI is not a panacea. It performs exceptionally well on well-de�ned, 1483

data-rich tasks, but falters when faced with ambiguity, context, or 1484

value-laden decisions. Overreliance on arti�cial intelligence intro- 1485

duces new risks. Therefore, responsible deployment requires adher- 1486

ence to several principles: 1487

• Use AI to enhance human capability rather than simply replace 1488

it. Human–AI teams often outperform either alone. 1489

• We prefer simpler, interpretable methods when they achieve 1490

adequate performance. Complexity for its own sake is counter- 1491

productive. 1492

• Maintain human oversight, particularly in high-stakes domains, 1493

to intervene when AI fails or encounters edge cases. 1494

• Continuously validate, monitor, and train AI systems: these are 1495

not ’set-and-forget’ tools, but evolving systems. 1496

• Assess broader implications, including ethical, legal, and social 1497

dimensions, before adopting AI for a given task. 1498

By remaining aware of the limitations of AI [3], we can make more 1499

informed decisions about when to rely on it and when to defer to 1500

human judgment or established traditional methods. As an expert 1501

aptly observed: ’AI is a tool, not a mentor’ [6]. It is best used in 1502
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service of human goals guided by humanwisdom. With this balanced1503

perspective, we can harness AI capabilities while avoiding overreach,1504

ensuring that technology remains an asset to society, rather than a1505

liability.1506

7. Contact Novalytics for More Information1507

Novalytics provides strategic advisory services in information gover-1508

nance, digital transformation, and data strategy for SMEs in reg-1509

ulated and high-risk sectors. We support organisations in mod-1510

ernising their operations through secure, privacy-preserving tech-1511

nologies—ensuring innovation is alignedwith regulatory compliance,1512

ethical standards, and long-term resilience.1513

For expert guidance on digital strategy, transformation planning,1514

or information governance frameworks, please contact us at:1515

• Website: https://www.novalytics.com1516

• Email: contact@novalytics.com1517
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